Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.490
Filtrar
1.
J Hazard Mater ; 470: 134113, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38565021

RESUMEN

Photo-induced degradation of dimethylmercury (DMHg) is considered to be an important source for the generation of methylmercury (MMHg). However, studies on DMHg photodegradation are scarce, and it is even debatable about whether DMHg can be degraded in natural waters. Herein, we found that both DMHg and MMHg could be photodegraded in three natural waters collected from the Yellow River Delta, while in pure water only DMHg photodegradation occurred under visible light irradiation. The effects of different environmental factors on DMHg photodegradation were investigated, and the underlying mechanisms were elucidated by density functional theory calculations and a series of control experiments. Our findings revealed that the DMHg degradation rate was higher in the tidal creek water compared to Yellow River, Yan Lake, and purified water. NO3-, NO2-, and DOM could promote the photodegradation with DOM and NO3- showing particularly strong positive effects. Different light sources were employed, and UV light was found to be more effective in DMHg photodegradation. Moreover, MMHg was detected during the photodegradation of DMHg, confirming that the photochemical demethylation of DMHg is a source of MMHg in sunlit water. This work may provide a novel mechanistic insight into the DMHg photodegradation in natural waters and enrich the study of the global biogeochemical cycle of Hg.


Asunto(s)
Compuestos de Metilmercurio , Fotólisis , Contaminantes Químicos del Agua , Compuestos de Metilmercurio/química , Compuestos de Metilmercurio/análisis , Compuestos de Metilmercurio/efectos de la radiación , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/efectos de la radiación , Contaminantes Químicos del Agua/análisis , Luz , Rayos Ultravioleta , Nitratos/química , Nitratos/análisis , Ríos/química
2.
Nature ; 628(8009): 776-781, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38658683

RESUMEN

Dissolved organic matter (DOM) is one of the most complex, dynamic and abundant sources of organic carbon, but its chemical reactivity remains uncertain1-3. Greater insights into DOM structural features could facilitate understanding its synthesis, turnover and processing in the global carbon cycle4,5. Here we use complementary multiplicity-edited 13C nuclear magnetic resonance (NMR) spectra to quantify key substructures assembling the carbon skeletons of DOM from four main Amazon rivers and two mid-size Swedish boreal lakes. We find that one type of reaction mechanism, oxidative dearomatization (ODA), widely used in organic synthetic chemistry to create natural product scaffolds6-10, is probably a key driver for generating structural diversity during processing of DOM that are rich in suitable polyphenolic precursor molecules. Our data suggest a high abundance of tetrahedral quaternary carbons bound to one oxygen and three carbon atoms (OCqC3 units). These units are rare in common biomolecules but could be readily produced by ODA of lignin-derived and tannin-derived polyphenols. Tautomerization of (poly)phenols by ODA creates non-planar cyclohexadienones, which are subject to immediate and parallel cycloadditions. This combination leads to a proliferation of structural diversity of DOM compounds from early stages of DOM processing, with an increase in oxygenated aliphatic structures. Overall, we propose that ODA is a key reaction mechanism for complexity acceleration in the processing of DOM molecules, creation of new oxygenated aliphatic molecules and that it could be prevalent in nature.


Asunto(s)
Agua Dulce , Oxidación-Reducción , Agua Dulce/química , Polifenoles/química , Carbono/química , Ríos/química , Lagos/química , Lignina/química , Taninos/química , Suecia , Espectroscopía de Resonancia Magnética con Carbono-13 , Oxígeno/química
3.
Environ Sci Technol ; 58(15): 6814-6824, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38581381

RESUMEN

Identifying persistent, mobile, and toxic (PMT) substances from synthetic chemicals is critical for chemical management and ecological risk assessment. Inspired by the triazine analogues (e.g., atrazine and melamine) in the original European Union's list of PMT substances, the occurrence and compositions of alkylamine triazines (AATs) in the estuarine sediments of main rivers along the eastern coast of China were comprehensively explored by an integrated strategy of target, suspect, and nontarget screening analysis. A total of 44 AATs were identified, of which 23 were confirmed by comparison with authentic standards. Among the remaining tentatively identified analogues, 18 were emerging pollutants not previously reported in the environment. Tri- and di-AATs were the dominant analogues, and varied geographic distributions of AATs were apparent in the investigated regions. Toxic unit calculations indicated that there were acute and chronic risks to algae from AATs on a large geographical scale, with the antifouling biocide cybutryne as a key driver. The assessment of physicochemical properties further revealed that more than half of the AATs could be categorized as potential PMT and very persistent and very mobile substances at the screening level. These results highlight that AATs are a class of PMT substances posing high ecological impacts on the aquatic environment and therefore require more attention.


Asunto(s)
Atrazina , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Ríos/química , Triazinas/análisis , Atrazina/análisis , China , Monitoreo del Ambiente
4.
Ying Yong Sheng Tai Xue Bao ; 35(3): 648-658, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38646752

RESUMEN

Carbon wet deposition and river carbon output in river basins are important components of global carbon cycle. The assessment of both properties is of great significance for regional carbon budget. However, research on these topics in high-latitude permafrost regions in China is still lacking. We conducted dynamic monitoring of carbon wet deposition and carbon output in the river from May 28th to October 30th, 2022, in Laoyeling watershed, a typical forested watershed in the Da Xing'an Mountains permafrost region. We analyzed the variations of carbon component concentrations and fluxes in precipitation and river water, and estimated the contribution of carbon wet deposition to carbon output in the watershed. The results showed that wet deposition fluxes of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and total dissolved carbon (TDC) in the Laoyeling watershed were 1354.86, 684.59, and 2039.45 kg·km-2, respectively. The fluxes of DOC, DIC, TDC, particulate organic carbon (POC), particulate inorganic carbon (PIC), and total carbon (TC) in the river were 601.75, 1977.30, 2579.05, 125.13, 21.99, and 2726.17 kg·km-2, respectively. The contribution of TDC wet deposition to the river TDC output was 9941.89 kg, accounting for 17.6% of total output. The DIC concentration in the river showed significant seasonal differences, with increased runoff resulting from precipitation leading to a decrease in DIC concentration in the river and showing a clear dilution effect, while the concentrations of DOC, POC, and PIC increased, mainly due to erosion effect. In conclusion, carbon wet deposition flux in the Laoyeling watershed was mainly determined by precipitation, and its contribution to river carbon output was relatively small compared to other factor. Runoff was the dominant factor affecting river carbon output. The results would provide important insights into carbon cycling and carbon budget balance in permafrost regions under climate change.


Asunto(s)
Carbono , Monitoreo del Ambiente , Bosques , Hielos Perennes , Ríos , China , Ríos/química , Carbono/análisis , Ciclo del Carbono , Lluvia/química , Ecosistema
5.
Ying Yong Sheng Tai Xue Bao ; 35(3): 705-712, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38646758

RESUMEN

The composition and stability of soil aggregates are important indicators for measuring soil quality, which would be affected by land use changes. Taking wetlands with different returning years (2 and 15 years) in the Yellow River Delta as the research object, paddy fields and natural wetlands as control, we analyzed the changes in soil physicochemical properties and soil aggregate composition. The results showed that soil water content, total organic carbon, dissolved organic carbon and total phosphorus of the returning soil (0-40 cm) showed an overall increasing trend with returning period, while soil pH and bulk density was in adverse. There was no significant change in clay content, electrical conductivity, and total nitrogen content. The contents of macro-aggregates and micro-aggregates showed overall increasing and decreasing trend with returning period, respectively. The stability of aggregates in the topsoil (0-10 cm) increased with returning years. Geometric mean diameter and mean weight diameter increased by 8.9% and 40.4% in the 15th year of returning, respectively, while the mass proportion of >2.5 mm fraction decreased by 10.5%. There was no effect of returning on aggregates in subsoil (10-40 cm). Our results indicated that returning paddy field to wetland in the Yellow River Delta would play a positive role in improving soil structure and aggregate stability.


Asunto(s)
Oryza , Ríos , Suelo , Humedales , Suelo/química , China , Ríos/química , Oryza/crecimiento & desarrollo , Oryza/química , Monitoreo del Ambiente , Agricultura/métodos , Fósforo/análisis , Fósforo/química , Carbono/análisis , Carbono/química
6.
Huan Jing Ke Xue ; 45(5): 2686-2693, 2024 May 08.
Artículo en Chino | MEDLINE | ID: mdl-38629532

RESUMEN

Riparian soil is a critical area of watersheds. The characteristics of biological contaminants in riparian soil affect the pollution control of the watershed water environment. Thus, the microbial community structure, antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs) in the riparian soil of the Lanzhou section of the Yellow River were investigated by analyzing the characteristics of soil samples collected from farmland, mountains, and industrial land. The results showed that the Proteobacteria, Bacteroidetes, and Actinobacteria were the dominant phyla in the riparian soil of Lanzhou section of the Yellow River. The microbial structure in the riparian soil was significantly correlated with the land use type (P < 0.05). The α diversity index of bacterial communities in land types was in the order of farmland > mountain > industry. Sulfonamide-typed ARGs were the most dominant genes in the soil of the Lanzhou section of the Yellow River Basin, among which the sul1 gene had the highest abundance, 20-36 000 times that of other detected ARGs. Moreover, the total absolute abundance of ARGs in industrial soil was the highest. Principal coordinate analysis (PCoA) displayed that the ARGs characteristics had a significant correlation with land types (P < 0.05), and intl1 and tnpA-04 drove the diffuseness of sulfonamide and tetracycline ARGs, respectively. Redundancy analysis (RDA) demonstrated that the content of inorganic salt ions and total phosphorus in the soil of the riparian zone of the Yellow River Lanzhou section were the main environmental factors, modifying the distribution of the microbial structure. Halobacterota and Acidobacteriota were the main microflora that drove the structural change in ARGs.


Asunto(s)
Antibacterianos , Suelo , Antibacterianos/análisis , Suelo/química , Genes Bacterianos , Ríos/química , Bacterias/genética , Sulfanilamida/análisis , Farmacorresistencia Microbiana/genética
7.
Sci Total Environ ; 927: 172340, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608909

RESUMEN

Tackling the impact of missing data in water management is crucial to ensure the reliability of scientific research that informs decision-making processes in public health. The goal of this study is to ascertain the root causes associated with cyanobacteria proliferation under major missing data scenarios. For this purpose, a dynamic missing data management methodology is proposed using Bayesian Machine Learning for accurate surface water quality prediction of a river from Limia basin (Spain). The methodology used entails a sequence of analytical steps, starting with data pre-processing, followed by the selection of a reliable dynamic Bayesian missing value prediction system, leading finally to a supervised analysis of the behavioral patterns exhibited by cyanobacteria. For that, a total of 2,118,844 data points were used, with 205,316 (9.69 %) missing values identified. The machine learning testing showed the iterative structural expectation maximization (SEM) as the best performing algorithm, above the dynamic imputation (DI) and entropy-based dynamic imputation methods (EBDI), enhancing in some cases the accuracy of imputations by approximately 50 % in R2, RMSE, NRMSE, and logarithmic loss values. These findings can impact how data on water quality is being processed and studied, thus, opening the door for more reliable water management strategies that better inform public health decisions.


Asunto(s)
Teorema de Bayes , Cianobacterias , Monitoreo del Ambiente , Aprendizaje Automático , Calidad del Agua , Cianobacterias/crecimiento & desarrollo , Monitoreo del Ambiente/métodos , España , Ríos/microbiología , Ríos/química , Microbiología del Agua
8.
Sci Total Environ ; 927: 172072, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38575033

RESUMEN

The use of biomarkers in fish for biomonitoring is a valuable approach to reveal effects of human impacts on biota health. Top predator fish are effective models for monitoring human activities' impacts on aquatic ecosystems. The Guaraguaçu River is the largest river-system on coastal region of South Brazil and a World Heritage site. The river receives contaminants from disorderly urban growth, including discharges of domestic sewage and small fishery boats, particularly during the tourist season. Our study aimed to assess impact of anthropogenic activities on water quality in the Guaraguaçu River by analyzing environmental contamination biomarkers in the top fish predator Hoplias malabaricus. Fish were collected using a fyke net trap across sectors representing a gradient of anthropic impact: sector 1 - pristine; sector 2 - impacted; and sector 3 - less impacted. Water samples were collected to analyze the presence of trace elements and pesticide. Biomarkers of the antioxidant system, histopathology, genotoxicity, neurotoxicity, and concentration of trace elements were analyzed in fish tissues. In water samples Al, Fe and Mn were detected, but no pesticides were found. In fish muscle, zinc and iron were detected. Brain acetylcholinesterase activity decreased in impacted sectors, indicating neurotoxic effects. The antioxidant system increased activity in gills and liver, and damage from lipoperoxidation was observed, particularly in sector 2 when compared to sector 1, suggesting oxidative stress. Histopathological biomarkers revealed lesions in the liver and gills of fish in impacted sectors. Micronuclei, a genotoxicity biomarker, were observed in organisms from all sectors. Our results demonstrate detrimental effects of poor water quality on biota health, even when contaminants are not detected in water.


Asunto(s)
Biomarcadores , Monitoreo del Ambiente , Contaminantes Químicos del Agua , Calidad del Agua , Animales , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Brasil , Biomarcadores/metabolismo , Ríos/química , Peces
9.
Sci Rep ; 14(1): 8318, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594356

RESUMEN

The Danube is a significant transboundary river on a global scale, with several tributaries. The effluents from industrial operations and wastewater treatment plants have an impact on the river's aquatic ecosystem. These discharges provide a significant threat to aquatic life by deteriorating the quality of water and sediment. Hence, a total of 16 Polycyclic Aromatic Hydrocarbons (PAHs) compounds were analyzed at six locations along the river, covering a period of 12 months. The objective was to explore the temporal and spatial fluctuations of these chemicals in both water and sediment. The study revealed a significant fluctuation in the concentration of PAHs in water throughout the year, with levels ranging from 224.8 ng/L during the summer to 365.8 ng/L during the winter. Similarly, the concentration of PAHs in sediment samples varied from 316.7 ng/g in dry weight during the summer to 422.9 ng/g in dry weight during the winter. According to the Europe Drinking Water Directive, the levels of PAHs exceeded the permitted limit of 100 ng/L, resulting in a 124.8% rise in summer and a 265.8% increase in winter. The results suggest that the potential human-caused sources of PAHs were mostly derived from pyrolytic and pyrogenic processes, with pyrogenic sources being more dominant. Assessment of sediment quality standards (SQGs) showed that the levels of PAHs in sediments were below the Effect Range Low (ERL), except for acenaphthylene (Acy) and fluorene (Fl) concentrations. This suggests that there could be occasional biological consequences. The cumulative Individual Lifetime Cancer Risk (ILCR) exceeds 1/104 for both adults and children in all sites.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Niño , Humanos , China , Ecosistema , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Hungría , Hidrocarburos Policíclicos Aromáticos/análisis , Medición de Riesgo , Ríos/química , Agua , Contaminantes Químicos del Agua/análisis , Adulto
10.
J Environ Sci (China) ; 143: 148-163, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38644013

RESUMEN

Rivers worldwide are under stress from eutrophication and nitrate pollution, but the ecological consequences overlap with climate change, and the resulting interactions may be unexpected and still unexplored. The Po River basin (northern Italy) is one of the most agriculturally productive and densely populated areas in Europe. It remains unclear whether the climate change impacts on the thermal and hydrological regimes are already affecting nutrient dynamics and transport to coastal areas. The present work addresses the long-term trends (1992-2020) of nitrogen and phosphorus export by investigating both the annual magnitude and the seasonal patterns and their relationship with water temperature and discharge trajectories. Despite the constant diffuse and point sources in the basin, a marked decrease (-20%) in nitrogen export, mostly as nitrate, was recorded in the last decade compared to the 1990s, while no significant downward trend was observed for phosphorus. The water temperature of the Po River has warmed, with the most pronounced signals in summer (+0.13°C/year) and autumn (+0.16°C/year), together with the strongest increase in the number of warm days (+70%-80%). An extended seasonal window of warm temperatures and the persistence of low flow periods are likely to create favorable conditions for permanent nitrate removal via denitrification, resulting in a lower delivery of reactive nitrogen to the sea. The present results show that climate change-driven warming may enhance nitrogen processing by increasing respiratory river metabolism, thereby reducing export from spring to early autumn, when the risk of eutrophication in coastal zones is higher.


Asunto(s)
Cambio Climático , Monitoreo del Ambiente , Eutrofización , Nitrógeno , Fósforo , Ríos , Temperatura , Contaminantes Químicos del Agua , Fósforo/análisis , Nitrógeno/análisis , Ríos/química , Italia , Contaminantes Químicos del Agua/análisis , Estaciones del Año
11.
An Acad Bras Cienc ; 96(1): e20220413, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38597497

RESUMEN

This study aimed to analyze the application of the Phytoplankton Community Index-PCI and Functional Groups-FG in determining the water quality of the Guamá River (Pará, Amazônia, Brazil). Samplings occurred monthly for analyses of phytoplankton and physical and chemical parameters, for two years, at the station where water was collected for human supply consumption. Seasonality influenced electrical conductivity, total suspended solids, dissolved oxygen, transparency, winds, true color, and N-ammoniacal. The ebb tide showed high turbidity and suspended solids. The density varied seasonally with the highest values occurring in September and December (61.1 ind mL-1 and 60.2 ind mL-1, respectively). Chlorophyll-a was more elevated in December (21.0 ± 4.7 µg L-1) and chlorophyll-c higher in relation to clorophyll- b indicated the dominance of diatoms. Functional Group P prevailed in the study months. Through the PCI índex the waters of Guamá River varied from reasonable to excellent and the TSI ranged from oligo to mesotrophic. The use of Functional Groups proved to be a promising tool in the determination of water quality since it covered the most abundant species in the Environment, but the PCI is not adequate to characterize Amazonian white-waters rivers, which have diatoms as the leading dominant group.


Asunto(s)
Diatomeas , Intervención Coronaria Percutánea , Humanos , Fitoplancton , Ríos/química , Brasil , Clorofila/análisis , Estaciones del Año , Monitoreo del Ambiente
12.
Environ Toxicol Chem ; 43(5): 965-975, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38501493

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are persistent, bioaccumulative, and toxic synthetic chemicals of concern, which have been detected in nearly all environmental compartments. The present study provides a data analysis on PFAS concentrations in the Dutch inland and coastal national waters and fish sampled from 2008 to 2022 and 2015 to 2022, respectively. Although the fish database is relatively small, the water database is unique because of its temporal dimension. It appears that PFAS are omnipresent in Dutch water and fish, with relatively small spatial differences in absolute and relative concentrations (fingerprints) and few obvious temporal trends. Only perfluorooctanoic acid and perfluorooctanesulfonic acid (PFOS) aqueous concentrations in the rivers Rhine and Scheldt have substantially decreased since 2012. Still, PFOS concentrations exceed the European water quality standards at all and fish standards at many locations. Masses of PFAS entering the country and the North Sea are roughly 3.5 tonnes/year. Generally, the data suggest that most PFAS enter the Dutch aquatic environment predominantly through diffuse sources, yet several major point sources of specific PFAS were identified using fingerprints and monthly concentration profiles as identification tools. Finally, combining concentrations in fish and water, 265 bioaccumulation factors were derived, showing no statistically significant differences between freshwater and marine fish. Overall, the analysis provides new insights into PFAS bioaccumulation and spatiotemporal trends, mass discharges, and sources in The Netherlands. Environ Toxicol Chem 2024;43:965-975. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Monitoreo del Ambiente , Peces , Fluorocarburos , Contaminantes Químicos del Agua , Países Bajos , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Fluorocarburos/metabolismo , Fluorocarburos/análisis , Peces/metabolismo , Animales , Ácidos Alcanesulfónicos/análisis , Ácidos Alcanesulfónicos/metabolismo , Bioacumulación , Ríos/química , Caprilatos/metabolismo
13.
Environ Sci Pollut Res Int ; 31(18): 27136-27154, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38507161

RESUMEN

Urbanizations and industrializations may accelerate the contamination and deterioration of groundwater quality. This study aimed to evaluate the quality and potential human health risks associated with shallow groundwater in Shenzhen, China, a city characterized by high levels of urbanization and industrialization. The hydrochemistry characteristics, water quality levels, and human health risks of main ions, nutrient elements, and metals in 220 samples collected from Maozhou River Basin (MRB) located in the northwest of Shenzhen were investigated. It showed that chemical constituents of the groundwater were further complicated by seawater intrusion and urbanization expansion. Water quality evaluated by fuzzy comprehensive method showed that 21.05% of samples distributed around reservoirs were classified into grade II or better. Nearly 79% of samples distributed in the densely populated urban land were classified into grade III or worse, indicating pollution from anthropogenic factors cannot be ignored. For the river tidal reach where river stage fluctuated about 0.5 to 1.5 m within a tidal cycle, the chemical composition of groundwater was influenced by frequent water exchange with the river. The carcinogenic and non-carcinogenic health risks for different age groups, from the high to the low, were children, adult women, adult men, adolescent women, and adolescent men, respectively. Approximately 39% of groundwater samples distributed around the densely populations area with health risk larger than 5 × 10-5 were unacceptable for children. This investigation would be helpful for improving groundwater management and as a practical reference for sustainable groundwater exploitation in the MRB.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Urbanización , Contaminantes Químicos del Agua , Calidad del Agua , Agua Subterránea/química , China , Contaminantes Químicos del Agua/análisis , Humanos , Ríos/química , Medición de Riesgo
14.
Environ Toxicol Chem ; 43(5): 1138-1148, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38517104

RESUMEN

Municipal and industrial wastewater effluent is an important source of water for lotic systems, especially during periods of low flow. The accumulated wastewater effluent flows-expressed as a percentage of total streamflow (ACCWW%)-contain chemical mixtures that pose a risk to aquatic life; fish may be particularly vulnerable when chronically exposed. Although there has been considerable focus on individual-level effects of exposure to chemical mixtures found in wastewater effluent, scaling up to population-level effects remains a challenging component needed to better understand the potential consequences of exposure in wild populations. This may be particularly important under a changing climate in which wastewater reuse could be essential to maintain river flows. We evaluated the effects of chronic exposure to wastewater effluent, as measured by ACCWW%, on the relative abundance of young-of-year (YOY), juvenile, and adult smallmouth bass (Micropterus dolomieu) populations in the Shenandoah River Watershed (USA). We found that increases in ACCWW% in the previous year and during the prespawn period were negatively correlated with the relative abundance of YOY, resulting in an average 41% predicted decrease in abundance (range = 0.5%-94% predicted decrease in abundance). This lagged effect suggests that adult fish reproductive performance may be compromised by chemical exposure during periods of high ACCWW%. No relationships between ACCWW% and juvenile or adult relative abundance were found, suggesting that negative effects of ACCWW% on YOY abundance may be offset due to compensatory mechanisms following higher ACCWW% exposure. Understanding the effects of wastewater effluent exposure at multiple levels of biological organization will help in the development of management strategies aimed at protecting aquatic life. Environ Toxicol Chem 2024;43:1138-1148. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Asunto(s)
Lubina , Ríos , Aguas Residuales , Contaminantes Químicos del Agua , Animales , Ríos/química , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Aguas Residuales/toxicidad , Monitoreo del Ambiente , Eliminación de Residuos Líquidos
15.
Environ Sci Pollut Res Int ; 31(18): 26355-26377, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38530521

RESUMEN

Urban rivers are affected at different levels by the intensification of human activities, representing a serious threat to the maintenance of terrestrial life and sustainable urban development. Consequently, great efforts have been dedicated to the ecological restoration of urban rivers around the world, as a solution to recovering the environmental functionality of these environments. In this sense, the present work aimed to investigate the effectiveness of interventions carried out aimed at the recovery of urban rivers, through a systematic review of the literature between 2010 and 2022, using the search term "rivers recovery." The results showed that there have been notable advances in the implementation of river recovery programs in urban areas around the world between the years analyzed. The ecosystems studied were affected, for the most part, by the increase in the supply of nutrients from domestic and industrial effluents, in addition to having highly urbanized surroundings and with several changes in land use patterns. The preparation of this literature review made it possible to demonstrate that the effectiveness of river recovery is extremely complex, since river recovery projects are developed for different reasons, as well as being carried out in different ways according to the intended objective.


Asunto(s)
Ríos , Ríos/química , Ecosistema , Restauración y Remediación Ambiental/métodos , Humanos , Conservación de los Recursos Naturales
16.
Environ Toxicol Chem ; 43(5): 1047-1061, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38450757

RESUMEN

Anthropogenically modified microparticles including microplastics are present in municipal wastewater treatment plant (WWTP) effluents; however, it is unclear whether biotic exposures are elevated downstream of these outfalls. In the fall of 2019, the present study examined whether microparticle levels in resident fish, environmental samples, and caged organisms were elevated near the Waterloo and Kitchener WWTP outfalls along the Grand River, Ontario, Canada. Wild rainbow darters (Etheostoma caeruleum) were collected from a total of 10 sites upstream and downstream of both WWTPs, along with surface water and sediment samples to assess spatial patterns over an approximately 70-km river stretch. Amphipods (Hyalella azteca), fluted-shell mussels (Lasmigona costata), and rainbow trout (Oncorhynchus mykiss) were also caged upstream and downstream of one WWTP for 14 or 28 days. Whole amphipods, fish digestive tracts, and mussel tissues (hemolymph, digestive glands, gills) were digested with potassium hydroxide, whereas environmental samples were processed using filtration and density separation. Visual identification, measurement, and chemical confirmation (subset only) of microparticles were completed. Elevated abiotic microparticles were found at several upstream reference sites as well as at one or both wastewater-impacted sites. Microparticles in amphipods, all mussel tissues, and wild fish did not show patterns indicative of increased exposures downstream of effluent discharges. In contrast, elevated microparticle counts were found in trout caged directly downstream of the outfall. Across all samples, cellulose fibers (mainly blue and clear colors) were the most common. Overall, results suggest little influence of WWTP effluents on microparticles in biota but rather a ubiquitous presence across most sites that indicates the importance of other point and nonpoint sources to this system. Environ Toxicol Chem 2024;43:1047-1061. © 2024 His Majesty the King in Right of Canada and The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. Reproduced with the permission of the Minister of Environment and Climate Change Canada.


Asunto(s)
Bivalvos , Monitoreo del Ambiente , Sedimentos Geológicos , Aguas Residuales , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/análisis , Aguas Residuales/química , Sedimentos Geológicos/química , Anfípodos , Microplásticos/análisis , Biota , Ontario , Oncorhynchus mykiss , Eliminación de Residuos Líquidos , Ríos/química
17.
Environ Sci Pollut Res Int ; 31(18): 26855-26879, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38456982

RESUMEN

In the twenty-first century, numerous forms of pollution have adversely impacted freshwater and the entire aquatic ecosystem. The higher population density in urban areas also contributes to increased releases of substances and thermal contaminants, significantly stressing the ecosystem of industrial companies. This study aimed to assess the potential pressure of industrial and municipal activities on water quality, radioactivity levels, and biological diversity, focusing on the consequences of radionuclides on periphytic diatom communities. Furthermore, the environmental impact of pollutants will be evaluated to monitor the ecological condition of the Ismailia Canal. Chemical analyses employed various instruments and methods to identify and quantify matter, with radionuclide elements measured by gamma spectrometry and diatoms counted and identified by inverted microscopy. Our results revealed that the canal was classified as excellent for irrigation, aquatic life, and drinking water based on FAO, CCME, and EWQS water quality indices, with high nutrient levels at Abu Za'baal fertilizer company. The activity concentration of 226Ra-series, 232Th-series, and 40K in the water and sediment samples for two seasons was within the guideline values, except for a few stations in the zone [B] (the industrial zone). Fertilizer samples (raw material) showed a high value of the 226Ra-series activity. Diatom community structure significantly varied across the different canal locations regarding the presence or absence of industrial activities, with no discernible variations between the study seasons. A specific variety of algal species was found to be predominant at the highest radioactive sites. Redundancy analysis (RDA) showed a significant correlation between parameters (pH, Na, TDS, PO4, SO4, SiO2, K, and CO3), radionuclides, environmental conditions, and the composition of the diatom community, especially in the area affected by industrial discharges. Moreover, the radiological hazard index in water and sediment remained below the maximum for two seasons. This research provides valuable data and information for communities and decision-makers, suggesting the strategic use of phycoremediation as a water biotreatment process to protect the valuable economic resources of the Ismailia Canal.


Asunto(s)
Monitoreo del Ambiente , Ríos , Calidad del Agua , Egipto , Ríos/química , Diatomeas , Contaminantes Radiactivos del Agua/análisis
18.
Chemosphere ; 355: 141782, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38548083

RESUMEN

While anthropogenic pollution is a major threat to aquatic ecosystem health, our knowledge of the presence of xenobiotics in coastal Dissolved Organic Matter (DOM) is still relatively poor. This is especially true for water bodies in the Global South with limited information gained mostly from targeted studies that rely on comparison with authentic standards. In recent years, non-targeted tandem mass spectrometry has emerged as a powerful tool to collectively detect and identify pollutants and biogenic DOM components in the environment, but this approach has yet to be widely utilized for monitoring ecologically important aquatic systems. In this study we compared the DOM composition of Algoa Bay, Eastern Cape, South Africa, and its two estuaries. The Swartkops Estuary is highly urbanized and severely impacted by anthropogenic pollution, while the Sundays Estuary is impacted by commercial agriculture in its catchment. We employed solid-phase extraction followed by liquid chromatography tandem mass spectrometry to annotate more than 200 pharmaceuticals, pesticides, urban xenobiotics, and natural products based on spectral matching. The identification with authentic standards confirmed the presence of methamphetamine, carbamazepine, sulfamethoxazole, N-acetylsulfamethoxazole, imazapyr, caffeine and hexa(methoxymethyl)melamine, and allowed semi-quantitative estimations for annotated xenobiotics. The Swartkops Estuary DOM composition was strongly impacted by features annotated as urban pollutants including pharmaceuticals such as melamines and antiretrovirals. By contrast, the Sundays Estuary exhibited significant enrichment of molecules annotated as agrochemicals widely used in the citrus farming industry, with predicted concentrations for some of them exceeding predicted no-effect concentrations. This study provides new insight into anthropogenic impact on the Algoa Bay system and demonstrates the utility of non-targeted tandem mass spectrometry as a sensitive tool for assessing the health of ecologically important coastal ecosystems and will serve as a valuable foundation for strategizing long-term monitoring efforts.


Asunto(s)
Materia Orgánica Disuelta , Contaminantes Ambientales , Ecosistema , Estuarios , Bahías , Ríos/química , Agricultura , Preparaciones Farmacéuticas
19.
Huan Jing Ke Xue ; 45(3): 1468-1479, 2024 Mar 08.
Artículo en Chino | MEDLINE | ID: mdl-38471862

RESUMEN

Pharmaceuticals and personal care products (PPCPs) are a group of emerging contaminants causing detrimental effects on aquatic living organisms even at low doses. To investigate the contamination characteristics and ecological risks of PPCPs in drains flowing into the Yellow River of Ningxia, 21 PPCPs were detected and analyzed using solid phase extraction and ultra-high performance liquid chromatography-mass spectrometry in this study. All 21 targeted compounds were detected in the drains, with total concentrations ranging from 47.52 to 1 700.96 ng·L-1. Ciprofloxacin, acetaminophen, benzophenone-3, and diethyltoluamide were the more commonly detected compounds, with detection frequencies exceeding 80%. The five highest-concentration PPCPs were acetaminophen, diethyltoluamide, caffeine, benzophenone-3, and levofloxacin, with the maximum concentrations of 597.21, 563.23, 559.00, 477.28, and 473.07 ng·L-1, respectively. Spatial analysis showed that the pollution levels of PPCPs in the drains of the four cities were different, with average concentrations of ∑PPCPs in the order of Yinchuan>Shizuishan>Wuzhong>Zhongwei. The total concentration of PPCPs before flowing into the Yellow River ranged from 124.82 to 1 046.61 ng·L-1. Source analysis showed that livestock and poultry breeding wastewater was the primary source for sulfadiazine and oxytetracycline, whereas medical wastewater was the primary source for levofloxacin and ciprofloxacin. The primary sources of triclocarban and triclosan were domestic sewage and industrial wastewater, whereas the primary source of caffeine and diethyltoluamide was domestic sewage. The pollution of diciofenac, cimetidine, triclocarban, and triclosan in the drains was positively correlated with the regional population and economic development level. The ecological risk assessment indicated that levofloxacin, diclofenac, gemfibrozil, benzophenone-3, and triclocarban posed high risks to aquatic organisms in drains flowing into the Yellow River. It is worthwhile to consider the mixture risk of the PPCPs that exhibited high risk at most sampling sites.


Asunto(s)
Benzofenonas , Carbanilidas , Cosméticos , Triclosán , Contaminantes Químicos del Agua , Acetaminofén , Organismos Acuáticos , Cafeína/análisis , Ciprofloxacina , Cosméticos/análisis , Monitoreo del Ambiente/métodos , Levofloxacino/análisis , Preparaciones Farmacéuticas , Medición de Riesgo , Ríos/química , Aguas del Alcantarillado/análisis , Aguas Residuales , Contaminantes Químicos del Agua/análisis
20.
J Environ Manage ; 356: 120620, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38522279

RESUMEN

Field drainage causes habitat loss, alters natural flow regimes, and impairs water quality. Still, drainage ditches often are last remnants of aquatic and wetland habitats in agricultural landscapes and as such, can be important for local biodiversity. Two-stage channels are considered as a greener choice for conventional ditches, as they are constructed to mimic the structure of natural lowland streams providing a channel for drainage water and mechanisms to decrease diffuse loading. Two-stage channels could also benefit local biodiversity and ecosystem functions, but existing information on their ecological benefits is scarce and incomplete. We collected environmental and biological data from six agricultural stream systems in Finland each with consequent sections of a conventional ditch and a two-stage channel to study the potential of two-stage channels to enhance aquatic and riparian biodiversity and ecological functions. Biological data included samples of stream invertebrates, diatoms and plants and riparian beetles and plants. Overall, both section types were highly dominated by few core taxa for most of the studied organism groups. Riparian plant and invertebrate communities seemed to benefit from the two-stage channel structure with adjacent floodplains and drier ditch banks. In addition, two-stage channel sections had higher aquatic plant diversity, algal productivity, and decomposition rate, but lower stream invertebrate and diatom diversity. Two-stage channel construction did not diversify the structure of stream channels which is likely one explanation for the lack of positive effects on benthic diversity. However, both section types harbored unique taxa found only in one of the two types in all studied organism groups resulting in higher local gamma diversity. Thus, two-stage channels enhanced local biodiversity in agricultural landscapes. Improvements especially in aquatic biodiversity might be achieved by increasing the heterogeneity of in-stream habitat structure and with further efforts to decrease nutrient and sediment loads.


Asunto(s)
Diatomeas , Ecosistema , Animales , Biodiversidad , Invertebrados , Plantas , Humedales , Ríos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...